Problems

1. For each of the following distributions, derive/find all of the following: PMF/PDF, CDF, median, μ , σ , σ^2 . Distributions are: Uniform Distribution, Birthday Distribution, Exponential Distribution, Laplacian Distribution, Pareto Distribution, Normal Distribution, Logistic Distribution, Dart Throw Distribution, Die Throw, Coin Flips, Number of Boys-Girls in a Family, Binomial Distribution.

True/False

2. True	False	Histograms are always defined over intervals of the form $[a, b]$ with $a \ge 0$ because probabilities are always non-negative.
3. True	False	$ \begin{array}{cccc} {\rm The} & {\rm height} & {\rm of} & {\rm a} & {\rm rectangle} & {\rm in} & {\rm a} & {\rm histogram} & {\rm equals} \\ {\rm \underline{the\ amount\ of\ the\ data\ corresponding\ to\ the\ subinterval}} \\ {\rm the\ width\ of\ the\ subinterval}}, & {\rm because} & {\rm all} & {\rm rectangular} \\ {\rm areas\ in\ a\ histogram\ must\ sum\ up\ to\ 1}}. \end{array} $
4. True	False	$P(x) = e^{-x^2}$ is a PDF on \mathbb{R} .
5. True	False	Uniform PDFs are defined by $f(x) = c$ for all $x \in \mathbb{R}$.
6. True	False	Shifting the bell-shaped PDF $f(x) = \frac{1}{\sqrt{\pi}}e^{-x^2}$ to the left by 5 units results in another PDF $g(x) = \frac{1}{\sqrt{\pi}}e^{-(x+5)^2}$ centered at $x = 5$.
7. True	False	CDFs are continuous functions on $\mathbb R$ but PDFs could be piecewise continuous on $\mathbb R.$
8. True	False	For a PDF to be centered at $x = a$, it means that a is the median of the CDF.
9. True	False	We adjusted the solution $y(t) = y_0 e^{-ct}$ of the exponential decay DE $y'(t) = -cy(t), y(0) = y_0$ with rate constant c to the PDF $Y(t) = ce^{-ct}$ for $x \ge 0$ and $y(t) = 0$ for $x < 0$ because we wanted to simplify the initial condition y_0 to match c .
10. True	False	CDFs behave in general like antiderivaties of their PDFs, but there are some situations where the CDF is not continuous and hence there is no way it can be an antiderivative of a PDF.
11. True	False	The formula $P(a \le X \le b) = F(b) - F(a)$ for a CDF $F(x)$ works because $F(x)$ can be essentially thoughout of as the "area-so-far" function for a PDF.

12.	True	False	To prove that a function $F(x)$ on \mathbb{R} is a CDF, we need only to confirm that it is non-decreasing on \mathbb{R} , attains only non-negative values, and that its value tends to 1 and 0 as $x \to \infty$ and $x \to -\infty$ correspondingly.
13.	True	False	The CDF of the bell-shaped PDF $f(x) = \frac{1}{\sqrt{\pi}}e^{-x^2}$ has a graph that is increasing and looks like a solution to the classic logistic model with carrying capacity $K = 1$, but it cannot be exactly equal to it because there is no elementary function of an antiderivative of e^{-x^2} yet we have derived the formula $g(x) = \frac{1}{1+Ae^{-kt}}$ for these logistic model solutions.
14.	True	False	There are at least three ways to compute the probability of a person to be born in May: using a discrete random variable, and using the PDF or the CDF of a continuous random variable.
15.	True	False	The formula for the mean of a continuous random variable is a limit version of the mean for a discrete random variable; but while the latter always exists for a finite amount of data, the former may not exist for certain continuous random variables.
16.	True	False	If the mean is larger than the median, the distribution tends to be more spread away on the right and more clustered together on the left.
17.	True	False	Both the median and the mean of an exponential distribution directly depend on the initial condition $f(0)$ of the DE $f'(x) = Cf(x)$ and on nothing else.
18.	True	False	During the process of drug decay (or extinction of species), it takes longer for half of the drug (or species) to be gone than for a randomly chosen average molecule (species) to be gone.
19.	True	False	If we make the area between a PDF and the x -axis out of uniform cardboard material and make an infinite seesaw out of the x -axis, the point on the x -axis where the seesaw will balance is the median of the distribution because there is an equal material to the left and to the right of the median.
20.	True	False	Exam distributions of large classes tend to have smaller means than medians when the medians are higher than 50% of the maximum possible score.
21.	True	False	The Pareto distribution fails to have a well-defined mean when the constant $a \ge 2$.
22.	True	False	Improper integrals resurface when we want to compute probabilities of discrete random variables with finitely many values.
23.	True	False	For a symmetric distribution, we do not have to calculate the mean because it will always equal the median.
24.	True	False	Integration by Parts and Substitution Rule can be safely forgotten as Statistics uses ready formulas from Mathematics in all basic examples.

25.	True	False	The formula for the standard deviation of a continuous random variable is a limit version of the standard deviation for a discrete random vari- able; but while the latter always exists for a finite amount of data, the former may not exist for certain continuous random variables.
26.	True	False	If the standard deviation is larger than the mean for an exam distribu- tion with only non-negative scores, then Chebychev's inequality will for sure predict negative scores on this exam.
27.	True	False	All of the median, mean, and standard deviation for an exponential distribution and for the Laplacian distribution directly depend on the initial condition $f(0)$ of the PDF and on nothing else.
28.	True	False	The $\sqrt{12}$ that appears in the denominator of the standard deviation for the uniform birthday distribution will also appear in the denominator of σ for any uniform distribution.
29.	True	False	If we make the area between a PDF and the x-axis out of uniform cardboard material, more than 55% of the material will be dedicated to the interval within 1.5μ of σ
30.	True	False	For exam distributions of large classes statisticians use a modified for- mula for σ , essentially "pretending" that there is one more sample item, in order to get a more accurate "unbiased" statistics.
31.	True	False	Improper integrals resurface when we want to justify the shortcut formula for σ^2 .
32.	True	False	For a symmetric distribution centered at 0, we do not have to calculate σ because it will always be 0 or not well-defined.
33.	True	False	For any continuous or discrete random variable X with a well-defined mean and variance, it is true that $\sigma^2(X) + \mu^2(X) = \mu(X^2)$, where X^2 is a random variable whose values are the squares of the corresponding values of X.
34.	True	False	The PDF of the logistic distribution is given by the solution to the logistic DE $y'(t) = ry(t)(1 - y(t))$.
35.	True	False	When we increase the initial condition $y(0)$ in the logistic model but keep everything else the same, the logistic distribution tends to move to the left; and similarly, when we increase r, the center of the logistic distribution tends to move to the left.
36.	True	False	After we establish that the logistic distribution is symmetric about $x = a/r$ and that the normal distribution is symmetric about $x = \mu$, we can automatically conclude that their means are correspondingly $x = a/r$ and μ without any further integration considerations.
37.	True	False	The log-plot transforms the points on a logistic distribution to lie on a line.

38.	True	False	σ appears twice in denominators in the formula for normal distribution.
39.	True	False	$\frac{1}{\sqrt{2\pi}}$ ensures that the formula for the normal distribution indeed represents a valid PDF.
40.	True	False	The z-scores are made possible by a linear change of variables that converts any normal distribution into the standard normal distribution; and hence, to know everything about normal distributions it suffices to study only the standard normal distribution.
41.	True	False	z scores are not suitable for computing probabilities of the type $P(-\infty \le X \le a)$ or $P(b \le X \le \mu)$ for arbitrary normal distributions.
42.	True	False	Normal distributions are defined only for positive X ; yet, when converted to the standard normal distribution, they may be defined for negative X too.
43.	True	False	$\pi^2 = \int_{-\infty}^{\infty} \frac{3t^2 e^{-t}}{(1+e^{-t})^2} dt.$
44.	True	False	PMFs replace PDFs when moving from continuous to discrete random variables.
45.	True	False	CDFs can be defined by the same probability formula for both discrete and continuous variables; however, at the next step when actually com- puting the CDFs, one must be careful to use correspondingly PMFs with integrals and PDFs with appropriate summations.
46.	True	False	The target spaces for PDFs, PMFs, and probability functions are all the same.
47.	True	False	The domains of PDFs and PMFs are the corresponding outcome spaces $\Omega.$
48.	True	False	A set with 10 elements has 2^{10} number of subsets, and hence there will be 2^{10} inputs for any probability function P on any outcome space Ω with 10 points.
49.	True	False	While we can define a discrete random variable without using a PMF, a continuous random variable has a PDF in its definition.
50.	True	False	$P(A\cup B)=P(A)+P(B)$ as long as A and B are independent events in different outcome spaces.
51.	True	False	Every row in Pascal's triangle represents the PMF of some binomial distribution.
52.	True	False	The probability of having 3 boys in a family of 7 children (assuming equal probability of having boys and girls) is equal to the probability of having 4 boys in a family of 7 children.
53.	True	False	To each probability space we can associate different random variables, but each probability space has a unique probability function.

54. True	False	The formula for the mean of a uniform distribution on $[a, b]$ has $\sqrt{12}$ in the denominator, while the formula for its standard deviation has 2 in the denominator.
55. True	False	For any R.V. X it is true that $E(5X) = 5E(X)$, $E(5 + X) = E(5) + E(X)$, and $E(5X) = E(5)E(X)$.
56. True	False	The shortcut formula for variance $Var(X) = E[X^2] - E^2[X]$ works for both continuous and discrete R.V.s X.
57. True	False	The standard deviation tells us how risky (or not risky) it is to play certain games.
58. True	False	The size of the outcome space Ω for rolling 5 die is 5 ⁶ .
59. True	False	The PDFs and PMFs play analogous roles in the formulas for mean (expected value) and standard deviation (standard error).
60. True	False	$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t e^{-\frac{t^2}{2}} dt = 1$ and $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{t^2}{2}} dt = 0.$
61. True	False	Var(X) can be defined as the expected value of the square of how far X is from its own mean $E(X) = \mu$; i.e., $Var(X) = E[(X - E(X))^2]$, or using an integral formula for continuous X, and as a consequence $Var(cX) = c^2 Var(X)$ and $SE(cX) = c SE(X)$ for any $c \in \mathbb{R}$.
62. True	False	The binomial coefficient $\binom{n}{k}$ will not change if we replace k by $n - k$.
63. True	False	The binomial coefficients $\binom{n}{k}$ increase for the first half of the values of k and then they decrease.
64. True	False	The formula for the mean of the average $\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$ of independent identically distributed RV's has \sqrt{n} in the denominator.
65. True	False	For any RV's X and Y, it is true that $E(5X - 7Y) = 5E(X) - 7E(Y)$ and $E(XY) = E(X)E(Y)$.
66. True	False	The formula for the variance $Var(X + Y) = Var(X) + Var(Y)$ works regardless of whether the RV's X and Y are independent or not.
67. True	False	To approximate the height of a tall tree (using similar triangles and measurements along the ground – without climbing the tree!) it is better to ask several people to do it independently of each other and then to average their results, than to do it once just by yourself.
68. True	False	The z-scores can be used to reduce probability calculations on any nor- mal distribution to using a table in the textbook, as long as we are not too many standard deviations σ from the mean μ in our original normal distribution.

69.	True	False	According to the Central Limit Theorem, the normalized distribution $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ is the standard normal distribution for n large, where \overline{X} is the average of n independent, identically distributed variables, each with mean μ and standard error σ/\sqrt{n} .
70.	True	False	The Law of Large Numbers can be viewed as part of the Central Limit Theorem.
71.	True	False	To prove that $Var(X) = E(X^2) - E^2(X)$ for any RV X, one needs to use that $E(X_1 + X_2) = E(X_1) + E(X_2)$ for some particular dependent RV's X_1 and X_2 .
72.	True	False	The Maximum Likelihood (M-L) method uses a probabilistic experiment to estimate a real world parameter θ , by considering all possible outcomes of the experiment.
73.	True	False	The formula for the PMF $f(k)$ of the binomial distribution for k successes out of n independent trials is a polynomial of degree n in the probability p of a success for each trial.
74.	True	False	To determine the Maximum Likelihood of a continuous variable, we can write a table for all values of the individual likelihoods $L(x \theta)$ and choose the θ that yields the largest value of $L(x \theta)$.
75.	True	False	When using a random variable X and one experiment with it to estimate a parameter θ , we compare all values of $L(x \theta)$ for $X = x$ fixed and θ varying.
76.	True	False	The log-derivative of $f(\theta) = L(x \theta)$ can used to shortcut calculations with the M-L method.
77.	True	False	The M-L method applied to estimate the standard error in a normal distribution by taking n independent measurements x_1, x_2, \ldots, x_n leads to the standard deviation formula for these same n measurements.
78.	True	False	The mean μ and standard error σ of a random variable X can be viewed as parameters and hence the M-L method can be applied to estimate them.
79.	True	False	If you interview n random people in the U.S. about their preference to saying "tom-ei-to" v.s. "tom-a-to" and you get k of them saying they prefer "tom-ei-to", you can conclude that based on this data alone your best prediction for the fraction of all people in the U.S. who indeed prefer "tom-ei-to" over "tom-a-to" is $\frac{n}{k}$.
80.	True	False	In the class examples of binomial distribution for discrete variables and normal distributions for continuous variables, in order to apply the M-L method, it was crucial that we could find the critical points for the corresponding PMF/PDFs.

81. 7	True	False	The formula $(\ln(f(\theta)))' = \frac{f'(\theta)}{f(\theta)}$ makes it possible to shift the process from finding critical points for the original $f(\theta)$ to finding critical points of $\ln(f(\theta))$.
82.	True	False	The "score equation" for a parameter θ estimated by the M-L method is essentially setting up the log-derivative of the likelihood function $f(\theta) = L(x \theta)$ equal to 0.
83. [True	False	Working with a larger sample of the population will make the "biased" estimate for σ^2 less biased.
84. 7	True	False	The Null hypothesis is a theory that we believe is true.
85. [True	False	The higher the significance of a test, the higher the probability of re- jecting a true Null hypothesis.
86. [True	False	Adding up the power and the significance of a test yields 1.
87. [True	False	A type-2 error made by a road patrol may result in letting drunken drivers continue driving.
88. 7	True	False	A criterion is used on data from experiments to accept the Alternative theory or to keep the Null hypothesis.
89. 7	True	False	A number of important questions about hypothesis testing can be reformulated eventually about using z -scores.
90. 7	True	False	The significance of a test shows how often, on the average, we can make a Type 1 error.
91. 7	True	False	Using two-sided Alternative Hypotheses H_1 may lead to twice as large significance as their one-sided analogs.
92. [True	False	Deciding on a rejection region lead to making global policies that affect many local decisions.
93. [True	False	In class we solved at least one problem in finding the power of a test $1 - \beta$.
94. 7	True	False	The p-value of a possible test result r is the probability that the experiment produces a result that is equally or more extreme (towards H_1) than r, assuming H_0 is true.